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Abstract

Telomeres are the ends of linear eukaryotic chromosomes facilitating the resolution of the ‘end
replication and protection’ problems, associated with linearity. At the nucleotide level, telo-
meres typically represent stretches of tandemly arranged telomeric repeats, which vary in
length and sequence among different groups of organisms. Recently, a composition of the
telomere-associated protein complex has been scrutinized in Trypanosoma brucei. In this
work, we subjected proteins from that list to a more detailed bioinformatic analysis and deli-
neated a core set of 20 conserved proteins putatively associated with telomeres in trypanoso-
matids. Out of these, two proteins (Ku70 and Ku80) are conspicuously missing in
representatives of the genus Blastocrithidia, yet telomeres in these species do not appear to
be affected. In this work, based on the analysis of a large set of trypanosomatids widely dif-
ferent in their phylogenetic position and life strategies, we demonstrated that telomeres of try-
panosomatids are diverse in length, even within groups of closely related species. Our analysis
showed that the expression of two proteins predicted to be associated with telomeres (those
encoding telomerase and telomere-associated hypothetical protein orthologous to
Tb927.6.4330) may directly affect and account for the differences in telomere length within
the species of the Leishmania mexicana complex.

Introduction

Trypanosomatidae is a family of protozoan parasites possessing a single large mitochondrion,
which encompasses a network of catenated circular DNA molecules, the so-called kinetoplast
or kDNA (Maslov et al., 2019). These species have been attracting research attention because
of numerous unique or rare biochemical and molecular traits, such as trans-splicing and poly-
cistronic transcription (Clayton, 2019; Michaeli, 2011), mitochondrial RNA editing
(Aphasizheva et al., 2020), presence of modified nucleotides (van Luenen et al., 2012) and
unusual organelles (Szöör et al., 2014; Docampo, 2016), or a bizarre variation of the nuclear
genetic code (Záhonová et al., 2016). Most of these flagellates are monoxenous (with one host
in their life cycle) parasites restricted to invertebrates (Maslov et al., 2013), while members of
the genera Endotrypanum, Leishmania, Phytomonas, Porcisia and Trypanosoma have switched
to dixeny (two-host life cycle) and infect vertebrates or plants in addition to invertebrates
(Lukeš et al., 2018). It is established beyond a reasonable doubt that the dixenous species
have evolved from the monoxenous ancestor(s) independently several times (Lukeš et al.,
2014). Notably, several Leishmania and Trypanosoma spp. are of medical importance, as
they cause severe human diseases, and are fairly well-studied (Stuart et al., 2008; Nussbaum
et al., 2010).

Telomeres typically represent repetitive physical ends of linear eukaryotic chromosomes,
variable in length and sequence in different groups of organisms (Fulnečková et al., 2013).
Their main role is to protect chromosome ends from being recognized and processed as
DNA double-strand breaks by the cellular repair machinery in order to prevent chromosomal
end-to-end fusions (Pfeiffer and Lingner, 2013). Such shielding is provided by the
telomere-associated protein complexes (Lewis and Wuttke, 2012) or specific complementary
DNA structures, such as telomere loops (t-loops) facilitating the protection of chromosome
ends (Tomáška et al., 2019). It is generally assumed that telomeres undergo gradual shortening
with each round of cell division because of incomplete lagging strand synthesis of linear DNA
templates by DNA polymerases, known as the ‘end replication problem’ (Olovnikov, 1973;
Greider, 1990; Hackett and Greider, 2002). In order to overcome this problem and, thus, pre-
vent telomere shortening, cells engage a dedicated enzyme called telomerase (Greider and
Blackburn, 1985).

Telomeres of kinetoplastids share many traits with those of other eukaryotes. They have the
canonical sequence (5′-ttaggg-3′) found in vertebrates, end with a t-loop, are associated with
capping protein complexes and maintained by telomerases (Muñoz-Jordán et al., 2001; Conte
and Cano, 2005; Fulnečková et al., 2013). Similar to the situation in other eukaryotic patho-
gens, genes encoding trypanosomatid virulence factors are often located in the sub-telomeric
regions and their expression may be co-regulated with telomeres (Chiurillo et al., 1999;
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Table 1. Predicted telomere-associated protein complex composition in T. brucei

Protein ID Annotation Protein function References

Tb927.2.6100 Hypothetical protein Essential for cell growth and kinetoplast (k)DNA maintenance; kDNA was reduced in
size or lost upon RNAi-mediated knock-down of the coding gene

Beck et al. (2013)

Tb927.3.1560 TRF-interacting factor 2, TIF-2 Interacts with the ttaggg binding factor (TRF), protecting it from degradation. Its
transient depletion decreases level of TRF and increases frequency of variant surface
glycoprotein (VSG) switching and sub-telomeric double-strand breaks (DSB)

Jehi et al. (2016), Jehi et al. (2014b)

Tb927.5.1700 Replication factor A 28 kDa subunit, RPA-2 Accumulates at DSB sites, where it forms RPA foci, stabilizing resected DNA and
triggering cell cycle arrest, RAD51 accumulation and damage repair. The protein was
shown to persist throughout the cell cycle in T. brucei and regulate metacyclogenesis in
T. cruzi

Glover et al. (2019), Pavani et al. (2016)

Tb927.6.4330 hypothetical protein Affects VSG allelic exclusion Glover et al. (2016)

Tb927.9.10770 Polyadenylate-binding protein 2, PABP-2 An abundant mRNA binding protein involved in translation initiation and general mRNA
metabolism

Kramer et al. (2013), Zoltner et al. (2018)

Tb927.9.15360 40S ribosomal protein S6 Regulates numerous cellular processes in eukaryotes Ruvinsky and Meyuhas (2006)

Tb927.9.5020 HMG-box domain-containing protein Generally, these small proteins bind DNA and regulate transcription, replication and
DNA repair

Hock et al. (2007)

Tb927.9.8740 Double-stranded RNA Binding Domain protein 3, DRBD3 One of RNA-binding proteins (RBPs) that regulate abundance of the specific subset of
mRNAs. Its depletion results in a growth arrest followed by the cell death

Estévez (2008)

Tb927.10.12850 ttaggg binding factor, TRF Essential for telomere end protection. Its ablation caused drastic reduction of G
overhangs and chromosome end fusions without affecting the overall telomere length.
Expression of TRF with reduced DNA binding affinity leads to increased VSG switching

Jehi et al. (2014a), Li et al. (2005)

Tb927.10.2520 PrimPol-like protein 2, PPL-2 A translesion polymerase accumulating in G2 phase of trypanosome cell cycle and
involved in postreplication tolerance of endogenous DNA damage. Its knock-down
leads to the cell cycle arrest prior to mitosis in late S/G2 and activation of the DNA
damage response

Rudd et al. (2013)

Tb927.10.6030 Proteasome Subunit Alpha type-1, PSA-1 A part of a eukaryotic proteasome 20S catalytic core complex. In parasites,
proteasomes are involved in cell differentiation and replication

Paugam et al. (2003)

Tb927.10.6220 5′-3′ exoribonuclease D, XRND A member of the XRN family of 5′-3′ exoribonucleases critical for ensuring the fidelity of
cellular RNA turnover in eukaryotes. Its knock-down in T. brucei inhibited cell growth,
but did not affect 5′ processing of several small RNAs

Li et al. (2006)

Tb927.11.370 Repressor Activator Protein 1, RAP-1 A telomeric protein recruited by TRF. Its depletion led to a de-repression of all VSGs in
silent expression sites, without affecting telomere length, and resulted in the increased
frequencies of the non-coding telomeric repeat-containing RNA (TERRA) and RNA:DNA
hybrids and, subsequently, DSBs in telomeric and subtelomeric loci

Nanavaty et al. (2017), Yang et al. (2009)

Tb927.11.5550 DNA polymerase θ, Pol θ A translesion DNA polymerase involved in the repair of DSBs via
microhomology-mediated end joining. Its RNAi-mediated depletion resulted in reduced
growth rate without a specific cell cycle arrest, accumulation of DNA damage and
chromosome segregation defects, and substantial de-regulation of telomeric VSG
genes. Orthologues in T. cruzi and L. infantum control DNA replication and resistance to
oxidative damage

de Lima et al. (2019), Fernández-Orgiler
et al. (2016), Leal et al. (2020)
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Dobson et al., 2006; Hovel-Miner et al., 2012). Moreover, trans-
posable elements are often found in association with telomeres
(Pardue et al., 1997; Rahnama et al., 2020). In agreement with
this, a sub-telomeric region of Leptomonas pyrrhocoris chromo-
some contains an integrated copy of an RNA-dependent RNA
polymerase putatively originating from an RNA virus of the fam-
ily Tombusviridae infecting this flagellate (Grybchuk et al., 2018),
and possibly contributing to the retrotransposon translocation
within the trypanosomatid genome. Telomeric regions of kineto-
plastid chromosomes also possess several features distinguishing
them from their counterpart in most of the other eukaryotes.
For example, the telomeres of Trypanosoma brucei increase in
length (by approximately 10 bp per generation) until they reach
an equilibrium (Bernards et al., 1983; Pays et al., 1983; Horn
et al., 2000). In trypanosomatids, a modified nucleobase, base J
(β-D-gluco-pyranosyl-oxy-methyl-uracil) is involved in RNA
polymerase II transcription termination and is preferentially loca-
lized to telomeres (Borst and van Leeuwen, 1997; Genest et al.,
2007; van Luenen et al., 2012).

To the best of our knowledge, there has been very little system-
atic effort to analyse telomeres in trypanosomatids outside the med-
ically relevant Trypanosoma and Leishmania spp. (Fu et al., 1998;
Fu and Barker, 1998a, 1998b; Chiurillo et al., 1999, 2002;
Muñoz-Jordán et al., 2001; Janzen et al., 2004; Conte and Cano,
2005; Genest and Borst, 2007). Therefore, we decided to do that
for a wide range of trypanosomatids with a special emphasis on
largely neglected parasites of insects, which are not pathogenic to
humans. We selected more than 20 proteins from a set of recently
defined putative trypanosomatid telomere-associated proteins (Reis
et al., 2018) for more detailed in silico analyses. For most of these
proteins, some functional information is available [Table 1; the
TriTrypDB (Aslett et al., 2010) gene IDs are used throughout the
text]. The predicted telomere-associated complex appears to be a
cohort of proteins with widely variable functions, from ribosome
and proteasome subunits to telomerase and even DNA repair pro-
teins (Boulton and Jackson, 1998; Paugam et al., 2003; Riha and
Shippen, 2003; Janzen et al., 2004; Dreesen et al., 2005; Ruvinsky
and Meyuhas, 2006; Chico et al., 2011; Sandhu et al., 2013;
Nenarokova et al., 2019). In this work, we analysed the evolutionary
history of telomere-associated proteins in Kinetoplastea, performed a
systematic analysis of telomere length variation among trypanosoma-
tids on the dataset, which incorporates a wide range of understudied
monoxenous members of the family Trypanosomatidae, and estab-
lished a correlation between the level of transcription for several
analysed telomere-associated proteins and the telomere length.

Materials and methods

In silico analyses

A putative set of telomere-associated proteins of T. brucei brucei
TREU927 (Reis et al., 2018) were used as queries for BLAST
searches (Altschul et al., 1990) against a dataset of annotated pro-
teins of 64 trypanosomatids and the eubodonid Bodo saltans.
First, BLASTp searches were performed with an E-value set to 1
and all the hits with an E-value not exceeding 10−15 were retained.
If the respective sequence was not identified among annotated
proteins, the searches were repeated with the tBLASTn algorithm
against a database of genome sequences. In case no protein was
identified in the genome, HMMER v.3.3 (Eddy, 2009), a more
sensitive method for the identification of divergent homologues
based on hidden Markov models was employed. Annotated pro-
teins and assembled genome sequences were downloaded from
the NCBI Genome (Sayers et al., 2019) and TriTrypDB v. 45/46
(Aslett et al., 2010) databases. The validity of the hits was con-
firmed using reciprocal BLAST searches against T. brucei proteinsTa
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Table 2. Presence of genes putatively involved in telomere maintenance in kinetoplastids

Tb927.2.6100:
hypothetical

protein

Tb927.3.1560:
TRF-interacting

factor 2
Tb927.3.5030:
KU70 protein

Tb927.3.5150:
exonuclease,
putative

Tb927.5.1700:
replication

factor A 28 kDa
subunit

Tb927.6.1760:
KU80 protein

Tb927.6.4330:
telomere-associated

protein

Tb927.9.10770:
polyadenylate-binding

protein 2

Tb927.9.15360:
40S ribosomal
protein S6

Tb927.9.3930:
hypothetical

protein

Tb927.9.4000:
hypothetical

protein

Tb927.9.5020:
HMG-box

domain-containing
protein

Crithidia bombi
08.076

+ + + + + + + +

Crithidia expoeki
BJ08.175

+ + + + + + + +

Crithidia
fasciculata Cf-Cl

+ + + + + + + +

Leptomonas
pyrrhocoris H10

+ + + + + + + +

Leptomonas
seymouri
ATCC30220

+ + + + + + + +

Lotmaria passim
SF

+ + + + + + + +

Endotrypanum
monterogeii
ATCC30507

+ + + + + + + +

Endotrypanum
monterogeii LV88

+ + + + + + + +

Porcisia deanei
TCC258

+ + + + + + + +

Porcisia hertigi
TCC260

+ + + + + + + +

Leishmania (M.)
enriettii LEM3045

+ + + + + + + +

Leishmania (M.)
macropodum
LV756

+ + + + + + + +

Leishmania (M.)
martiniquensis
LEM2494

+ + + + + + + +

Leishmania (S.)
adleri HO174

+ + + + + + + +

Leishmania (S.)
tarentolae
ParrotTarII

+ + + + + + + +

Leishmania (L.)
aethiopica L147

+ + + + + + + +

Leishmania (L.)
tropica L590

+ + + + + + + +

Leishmania (L.)
arabica LEM1108

+ + + + + + + +

+ + + + + + + +

(Continued )
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Table 2. (Continued.)

Tb927.2.6100:
hypothetical

protein

Tb927.3.1560:
TRF-interacting

factor 2
Tb927.3.5030:
KU70 protein

Tb927.3.5150:
exonuclease,
putative

Tb927.5.1700:
replication

factor A 28 kDa
subunit

Tb927.6.1760:
KU80 protein

Tb927.6.4330:
telomere-associated

protein

Tb927.9.10770:
polyadenylate-binding

protein 2

Tb927.9.15360:
40S ribosomal
protein S6

Tb927.9.3930:
hypothetical

protein

Tb927.9.4000:
hypothetical

protein

Tb927.9.5020:
HMG-box

domain-containing
protein

Leishmania (L.)
turanica LEM423

Leishmania (L.)
gerbilli LEM452

+ + + + + + + +

Leishmania (L.)
major Friedlin

+ + + + + + + +

Leishmania (L.)
major LV39

+ + + + + + + +

Leishmania (L.)
major SD75

+ + + + + + + +

Leishmania (L.)
donovani
BPK282A1

+ + + + + + + +

Leishmania (L.)
infantum JPCM5

+ + + + + + + +

Leishmania (L.)
amazonensis
M2269

+ + + + + + * +

Leishmania (L.)
mexicana M379

+ + + + + + + +

Leishmania (V.)
braziliensis M2903

+ + + + + + + +

Leishmania (V.)
braziliensis M2904

+ + + + + + + +

Leishmania (V.)
peruviana
PAB-4377

+ + + + + + + +

Leishmania (V.)
panamensis L13

+ + + + + + + +

Novymonas
esmeraldas
E262AT

+ + + + + + + +

Blastocrithidia sp.
p57

+ + + + + +

Vickermania
ingenoplastis CP21

+ + + + + + + +

Phytomonas
francai TCC064

+ + + + + + + +

Phytomonas
serpens 9T

+ + + + + + + +

Phytomonas sp.
HART1

+ + + + + + +

(Continued )
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Table 2. (Continued.)

Tb927.2.6100:
hypothetical

protein

Tb927.3.1560:
TRF-interacting

factor 2
Tb927.3.5030:
KU70 protein

Tb927.3.5150:
exonuclease,
putative

Tb927.5.1700:
replication

factor A 28 kDa
subunit

Tb927.6.1760:
KU80 protein

Tb927.6.4330:
telomere-associated

protein

Tb927.9.10770:
polyadenylate-binding

protein 2

Tb927.9.15360:
40S ribosomal
protein S6

Tb927.9.3930:
hypothetical

protein

Tb927.9.4000:
hypothetical

protein

Tb927.9.5020:
HMG-box

domain-containing
protein

Phytomonas sp.
EM1

+ + + + + + + +

Wallacemonas
collosoma
ATCC30261

+ + + + + + + +

Wallacemonas
rigidus Sld

+ + + + + + + +

Wallacemonas sp.
MBr04

+ + + + + + + +

Wallacemonas
sp. 195SL

+ + + + + + + +

Wallacemonas sp.
Trypx

+ + + + + + + +

Wallacemonas sp.
Wsd

+ + + + + + + +

Angomonas
deanei TCC036E

+ + + + + + + +

Angomonas
desouzai TCC079E

+ + + + + + + +

Strigomonas
culicis TCC012E

+ + + + + + + +

Strigomonas galati
TCC219

+ + + + + + + +

Strigomonas
oncopelti TCC290E

+ + + + + + + +

Blechomonas
ayalai B08-376

+ + + + + + + + +

Trypanosoma
brucei gambiense
DAL972

+ + + + + + + + + + + +

Trypanosoma
brucei brucei Lister
427

+ + + + + + + + + + + +

Trypanosoma
evansi STIB_805

+ + + + + + + + + + + +

Trypanosoma
equiperdum
OVI_V2

+ + + + + + + + + + + +

Trypanosoma
congolense IL3000

+ + + + + + + + + +

Trypanosoma
vivax Y486

+ + + + + + + + + +

(Continued )
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Table 2. (Continued.)

Tb927.2.6100:
hypothetical

protein

Tb927.3.1560:
TRF-interacting

factor 2
Tb927.3.5030:
KU70 protein

Tb927.3.5150:
exonuclease,
putative

Tb927.5.1700:
replication

factor A 28 kDa
subunit

Tb927.6.1760:
KU80 protein

Tb927.6.4330:
telomere-associated

protein

Tb927.9.10770:
polyadenylate-binding

protein 2

Tb927.9.15360:
40S ribosomal
protein S6

Tb927.9.3930:
hypothetical

protein

Tb927.9.4000:
hypothetical

protein

Tb927.9.5020:
HMG-box

domain-containing
protein

Trypanosoma cruzi
CL-EL

+ + + + + + + +

Trypanosoma cruzi
CL-Br NEL

+ + + + + + + + + +

Trypanosoma cruzi
marinkellei B7

+ + + + + + + + + +

Trypanosoma
rangeli SC58

+ + + + + + + + +

Trypanosoma
grayi ANR4

+ + + + + + + + + +

Trypanosoma
theileri Edinburgh

+ + + + + + + + + +

Paratrypanosoma
confusum CUL13

+ + + + + + + + +

Bodo saltans
Lake_Konstanz

+ + + + + + +

Tb927.9.8740:
double RNA
binding

domain protein
3

Tb927.10.12850:
ttaggg binding

factor

Tb927.10.2200:
hypothetical

protein

Tb927.10.2520:
PrimPol-like
protein 2

Tb927.10.4220:
hypothetical

protein

Tb927.10.6030:
proteasome
subunit alpha

type-1

Tb927.10.6220:
5′-3′

exoribonuclease
D

Tb927.11.10190:
telomerase
reverse

transcriptase

Tb927.11.16120:
hypothetical

protein

Tb927.11.370:
repressor
activator
protein 1

Tb927.11.5550:
DNA polymerase

theta

Tb927.11.9870:
telomere-associated

protein 1

Crithidia bombi
08.076

+ + + + + + + + + + + +

Crithidia expoeki
BJ08.175

+ + + + + + + + + + + +

Crithidia
fasciculata Cf-Cl

+ + + + + + + + + + + +

Leptomonas
pyrrhocoris H10

+ + + + + + + + + + + +

Leptomonas
seymouri
ATCC30220

+ + + + + + + + + + + +

Lotmaria passim
SF

+ + + + + + + + + + + +

Endotrypanum
monterogeii
ATCC30507

+ + + + + + + + + + + +

Endotrypanum
monterogeii LV88

+ + + + + + + + + + + +

Porcisia deanei
TCC258

+ + + + + + + + + + + +

+ + + + + + + + + + + +

(Continued )
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Table 2. (Continued.)

Tb927.9.8740:
double RNA
binding

domain protein
3

Tb927.10.12850:
ttaggg binding

factor

Tb927.10.2200:
hypothetical

protein

Tb927.10.2520:
PrimPol-like
protein 2

Tb927.10.4220:
hypothetical

protein

Tb927.10.6030:
proteasome
subunit alpha

type-1

Tb927.10.6220:
5′-3′

exoribonuclease
D

Tb927.11.10190:
telomerase
reverse

transcriptase

Tb927.11.16120:
hypothetical

protein

Tb927.11.370:
repressor
activator
protein 1

Tb927.11.5550:
DNA polymerase

theta

Tb927.11.9870:
telomere-associated

protein 1

Porcisia hertigi
TCC260

Leishmania (M.)
enriettii LEM3045

+ + + + + + + + + + + +

Leishmania (M.)
macropodum
LV756

+ + + + + + + + + + + +

Leishmania (M.)
martiniquensis
LEM2494

+ + + + + + + + + + + +

Leishmania (S.)
adleri HO174

+ + + + + + + + + + + +

Leishmania (S.)
tarentolae
ParrotTarII

+ + + + + + + + + + + +

Leishmania (L.)
aethiopica L147

+ + + + + + + + + + + +

Leishmania (L.)
tropica L590

+ + + + + + + + + + + +

Leishmania (L.)
arabica LEM1108

+ + + + + + + + + + + +

Leishmania (L.)
turanica LEM423

+ + + + + + + + + + + +

Leishmania (L.)
gerbilli LEM452

+ + + + + + + + + + + +

Leishmania (L.)
major Friedlin

+ + + + + + + + + + + +

Leishmania (L.)
major LV39

+ + + + + + + + + + + +

Leishmania (L.)
major SD75

+ + + + + + + + + + + +

Leishmania (L.)
donovani
BPK282A1

+ + + + + + + + + + + +

Leishmania (L.)
infantum JPCM5

+ + + + + + + + + + + +

Leishmania (L.)
amazonensis
M2269

+ + + + + + + + + + + +

Leishmania (L.)
mexicana M379

+ + + + + + + + + + + +

(Continued )
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Table 2. (Continued.)

Tb927.9.8740:
double RNA
binding

domain protein
3

Tb927.10.12850:
ttaggg binding

factor

Tb927.10.2200:
hypothetical

protein

Tb927.10.2520:
PrimPol-like
protein 2

Tb927.10.4220:
hypothetical

protein

Tb927.10.6030:
proteasome
subunit alpha

type-1

Tb927.10.6220:
5′-3′

exoribonuclease
D

Tb927.11.10190:
telomerase
reverse

transcriptase

Tb927.11.16120:
hypothetical

protein

Tb927.11.370:
repressor
activator
protein 1

Tb927.11.5550:
DNA polymerase

theta

Tb927.11.9870:
telomere-associated

protein 1

Leishmania (V.)
braziliensis M2903

+ + + + + + + + + + + +

Leishmania (V.)
braziliensis M2904

+ + + + + + + + + + + +

Leishmania (V.)
peruviana
PAB-4377

+ + + + + + + + + + + +

Leishmania (V.)
panamensis L13

+ + + + + + + + + + + +

Novymonas
esmeraldas
E262AT

+ + + + + + + + + + + +

Blastocrithidia sp.
p57

+ + + + + + + + + + +

Vickermania
ingenoplastis CP21

+ + + + + + + + + + +

Phytomonas
francai TCC064

+ + + + + + + + + + +

Phytomonas
serpens 9T

+ + + + + + + + + + + +

Phytomonas sp.
HART1

+ + + + + + + + + + +

Phytomonas sp.
EM1

+ + + + + + + + + + + +

Wallacemonas
collosoma
ATCC30261

+ + + + + + + + + + + +

Wallacemonas
rigidus Sld

+ + + + + + + + + + + +

Wallacemonas sp.
MBr04

+ + + + + + + + + + + +

Wallacemonas
sp. 195SL

+ + + + + + + + + + + +

Wallacemonas sp.
Trypx

+ + + + + + + + + + + +

Wallacemonas sp.
Wsd

+ + + + + + + + + + + +

Angomonas
deanei TCC036E

+ + + + + + + + + + + +

Angomonas
desouzai TCC079E

+ + + + + + + + + + + +
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Table 2. (Continued.)

Tb927.9.8740:
double RNA
binding

domain protein
3

Tb927.10.12850:
ttaggg binding

factor

Tb927.10.2200:
hypothetical

protein

Tb927.10.2520:
PrimPol-like
protein 2

Tb927.10.4220:
hypothetical

protein

Tb927.10.6030:
proteasome
subunit alpha

type-1

Tb927.10.6220:
5′-3′

exoribonuclease
D

Tb927.11.10190:
telomerase
reverse

transcriptase

Tb927.11.16120:
hypothetical

protein

Tb927.11.370:
repressor
activator
protein 1

Tb927.11.5550:
DNA polymerase

theta

Tb927.11.9870:
telomere-associated

protein 1

Strigomonas
culicis TCC012E

+ + + + + + + + + + + +

Strigomonas galati
TCC219

+ + + + + + + + + + +

Strigomonas
oncopelti TCC290E

+ + + + + + + + + + + +

Blechomonas
ayalai B08-376

+ + + + + + + + + + + +

Trypanosoma
brucei gambiense
DAL972

+ + + + + + + + + + + +

Trypanosoma
brucei brucei Lister
427

+ + + + + + + + + + + +

Trypanosoma
evansi STIB_805

+ + + + + + + + + + + +

Trypanosoma
equiperdum
OVI_V2

+ + + + + + + + + + + +

Trypanosoma
congolense IL3000

+ + + + + + + + + + + +

Trypanosoma
vivax Y486

+ + + + + + + + + + + +

Trypanosoma cruzi
CL-EL

+ + + + + + + + + + +

Trypanosoma cruzi
CL-Br NEL

+ + + + + + + + + + + +

Trypanosoma cruzi
marinkellei B7

+ + + + + + + + + + + +

Trypanosoma
rangeli SC58

+ + + + + + + + + +

Trypanosoma
grayi ANR4

+ + + + + + + + + + + +

Trypanosoma
theileri Edinburgh

+ + + + + + + + + + + +

Paratrypanosoma
confusum CUL13

+ + + + + + + + + + + +

Bodo saltans
Lake_Konstanz

+ + + + + + + + + + +

Species analysed by Southern blotting are shaded.
+, identified; empty, not identified; *, identified in strain UA301.
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and alignments including the query and all identified proteins, if
necessary. The resulting gene presence/absence table and a clado-
gram manually written in a Newick format based on recent pub-
lications (Butenko et al., 2019; Kostygov et al., 2014, 2020;

Kostygov and Yurchenko, 2017; Lukeš et al., 2018; Frolov et al.,
2019; Kato et al., 2019) were used for Dollo parsimony analysis
in the Count software (Csűrös, 2010) and results were visualized
in a graphical editor.

Fig. 1. Gains and losses of genes encoding putative telomere-associated proteins in kinetoplastids.
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Trypanosomatid isolates and cultivation

Cultures of Crithidia expoeki (BJ08.175), C. fasciculata (Cf-Cl),
C. fasciculata (ATCC20358), C. termophilla (ATCC30817),
L. pyrrhocoris (H10), L. seymouri (ATCC30220), Novymonas
esmeraldas (E262AT), Strigomonas oncopelti (TCC290E) and
Zelonia costaricensis (15EC) were grown in BHI medium
(Oxoid/Thermo Fisher Scientific, Basingstoke, UK) supplemen-
ted with 2 μg mL−1 Hemin (Sigma-Aldrich, St. Louis, USA)
and 50 units mL−1 of Penicillin/Streptomycin (BioSera, Nuaillé,
France) at 23°C. Cultures of Endotrypanum monterogeii
(ATCC30507), Herpetomonas samuelpessoai, Leishmania
(Leishmania) major (LV39), L. (L.) amazonensis (Josefa, LV78,
LV79 and PH8), L. (L.) mexicana (M379), L. (Mundinia) mar-
tiniquensis (LEM2494), L. (M.) orientalis (PCM2), L.
(Sauroleishmania) tarentolae (ParrotTarII), L. (Viannia) brazi-
liensis (human2017), L. (V.) guyanensis (M4147), Phytomonas
sp. (EM1), Porcisia deanei (TCC258) and P. hertigi (TCC260)
were grown in M199 medium supplemented with 2 μg mL−1

Biopterin, 2 μg mL−1 Hemin (all Sigma-Aldrich), 25 mM

HEPES (Lonza, Basel, Switzerland), 50 units mL−1 of Penicillin/
Streptomycin (BioSera) and 10% fetal bovine serum (BioWest,
Nuaillé, France) at 23°C. Cultures of Angomonas deanei
(CT-IOC 044), A. desouzai (CT-IOC 109), Blastocrithidia sp.
(p57), Blastocrithidia triatomae, Blechomonas ayalai (B08-376),
Blechomonas pulexsimulantis (ATCC50186), Herpetomonas mus-
carum (MMO-01), Jaenimonas sp. (Finn-01.02), Kentomonas sor-
sogonicus (MF-08.02), Lafontella sp. (GMO-01), Vickermania
ingenoplastis (CP21), Wallacemonas collosoma (ATCC30261)
and W. rigidus (PL11) were maintained in SDM medium
(BioWest) supplemented with 10% fetal bovine serum (BioWest)
and 50 units mL−1 of Penicillin/Streptomycin (BioSera) at 23°C.
In the cases of Lafontella and Endotrypanum, cultures were
grown in a bi-phasic medium, overlaying blood agar. All species

were validated by amplifying and sequencing the 18S rRNA gene
as described previously (Kostygov et al., 2014).

Quantification of transcription level of genes encoding
telomeric proteins using RT-qPCR

RNA was isolated and transcript levels of the telomeric proteins
were assessed by RT-qPCR as described previously (Záhonová
et al., 2014; Kraeva et al., 2019). Sequences of the specific primers
for L. mexicana/amazonensis orthologues of T. brucei genes are
listed in Supplementary Table 1. Expression values were normal-
ized to those of 18S rRNA.

Southern blotting

The previously established terminal restriction fragment analysis
of telomere lengths protocol was followed (Janzen et al., 2004).
In brief, total genomic DNA from the log-phase grown cells
was isolated and digested with AluI, HinfI and RsaI overnight.
Restriction fragments were separated in 0.75% agarose gel, trans-
ferred to a ZetaProbe blotting membrane (Bio-Rad, Hercules,
USA), probed with the DIG-labelled telomeric probe
[CCCTAA]x25 in the DIG Easy Hyb buffer (Roche Diagnostics,
Indianapolis, USA), and visualized with the DIG Luminescent
Detection Kit (Roche Diagnostics). The probe was labelled by
the Dioxigenin NT Labeling Kit (Jena Bioscience GmbH, Jena,
Germany). Statistics of the telomere lengths were obtained with
an online tool WALTER (Web-based Analyser of the Length of
TElomeRes) (Lyčka et al., 2021). For the loading and integrity
control in the L. mexicana complex analysis, DNAs were pro-
cessed as above, and the membrane was probed against a fragment
of a gene encoding telomerase (LmxM.36.3930) (Supplementary
Table 1).

Fig. 2. Southern blotting analysis of telomere repeats in selected species of Trypanosomatidae. Marker sizes are indicated on the left. The vertical lines denote a
composite image from the same blot. DNA integrity controls are presented in Supplementary Fig. 1 (left and middle panels).
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Results and discussion

The core set of proteins putatively involved in telomere
maintenance in kinetoplastids is conserved

To study the phylogenetic distribution of proteins predicted to
be involved in telomere maintenance (Reis et al., 2018), we ana-
lysed the presence/absence of the corresponding 24 genes in the
available genomes of trypanosomatids and their close eubodonid
relative, B. saltans (Table 2). Most of the studied proteins (20 of
24) are well conserved and we consider them as a core set puta-
tively involved in telomere maintenance in kinetoplastids. It is
worth noting that the telomere association and function in telo-
mere maintenance has already been confirmed for some of
these proteins, while some others have not been functionally
characterized yet. Thus, the composition of the core set of pro-
teins involved in telomere maintenance, as defined previously
(Reis et al., 2018) and discussed herein, should be taken with
caution. Despite the fact that most of the respective genes are
conserved across Kinetoplastea (Fig. 1, Table 2) and, thus
appear to be present in the kinetoplastid common ancestor,
we came across several interesting exceptions that are discussed
in detail below.

A set of three proteins (orthologues of T. brucei Tb927.3.1560,
Tb927.9.5020 and Tb927.11.370) was acquired by the common
ancestor of trypanosomatids upon the separation from bodonids
(Fig. 1). One of them, Tb927.3.1560 [TIF-2, an orthologue of
mammalian TINF2 (Jehi et al., 2014a; 2014b)] was suggested to
be essential, as it is involved in shelterin (a protein complex impli-
cated in telomere protection) assembly and telomerase-mediated
telomere length maintenance in other organisms (Walne et al.,
2008; Frank et al., 2015). Yet, it is not present in bodonids and
was secondarily lost in all other trypanosomatids outside of the
genera Paratrypanosoma, Trypanosoma and Blechomonas
(Fig. 1), raising a question of how do they cope with its absence
or whether they replaced it with a functional analogue?
Tb927.2.6100 is Trypanosoma-specific, confirming previous
report (Beck et al., 2013). Surprisingly, this protein was shown
to be specifically associated with kDNA, so its role in telomere
maintenance, if any, remains to be elucidated by functional gen-
etics approaches. Two proteins (orthologues of T. brucei
Tb927.9.3930 and Tb927.9.4000) are present only in four species
of the T. brucei group and may determine specific traits of these
parasites.

An orthologue of Tb927.11.9870 (TelAP-1) is present in most
species, but it is conspicuously absent from the representatives of
two monoxenous groups (Blastocrithidia and Vickermania spp.)
and most Phytomonas spp., plant pathogens with streamlined
genomes (Porcel et al., 2014). While we cannot rule out a possi-
bility that the protein is divergent beyond recognition by available
bioinformatics tools, there may exist another component fulfilling
the role of TelAP-1 in these species.

Of special attention is the absence of Tb927.3.5030 (Ku70) and
Tb927.3.5030 (Ku80) orthologues in Blastocrithidia sp., which has
a non-canonical nuclear genetic code with all three stop codons
reassigned to encode amino acids (Záhonová et al., 2016). It
has been recently proposed that such an absence may lead to
the accumulation of numerous insertions in many protein-coding
genes of these organisms (Nenarokova et al., 2019).

Trypanosomatid telomeres are variable in length

We performed a systematic screen of the telomere length across
Trypanosomatidae by Southern blotting (Fig. 2, Table 3). Our
analysis revealed that monoxenous Leishmaniinae (Kostygov
and Yurchenko, 2017) of the genera Leptomonas, Novymonas
and Zelonia have fairly short telomeres (weighted medians

Table 3. Telomere lengths (weighted median, minimum–maximum) in selected
species of Trypanosomatidae

Median (min–max) of telomere
length, bp

Crithidia expoeki BJ08.175 4,271 (1619–33 446)

C. fasciculata ATCC20358 506 (252–1047)

C. fasciculata Cf-Cl 368 (252–983)

C. termophilla ATCC30817 1374 (512–3655)

Leptomonas pyrrhocoris H10 874 (328–4859)

L. seymouri ATCC30220 875 (386–2941)

Endotrypanum monterogeii
ATCC30507

916 (450–2182)

Porcisia deanei TCC258 1875 (705–10 469)

P. hertigi TCC260 4992 (1305–27 381)

Leishmania (Mundinia)
martiniquensis LEM2494

2519 (1009–8231)

L. (M.) orientalis PCM2 1488 (1033–2327)

L. (Sauroleishmania) tarentolae
ParrotTarII

3938 (1263–27 381)

L. (Leishmania) major LV39 1842 (573–13 381)

L. (L.) amazonensis LV78 435 (247–779)

L. (L.) amazonensis LV79 3363 (252–34 459)

L. (L.) amazonensis PH8 362 (253–1260)

L. (L.) amazonensis Josefa 443 (253–2481)

L. (L.) mexicana M379 393 (271–840)

L. (L.) mexicana M379 ΔKu80 630 (248–3463)

L. (L.) mexicana M379 ΔKu70 521 (248–3421)

L. (Viannia) braziliensis human2017 1911 (587–7865)

L. (V.) guyanensis M4147 5105 (1782–27 381)

Novymonas esmeraldas E262AT 1238 (535–15 198)

Zelonia costaricensis 15EC 937 (264–3818)

Blastocrithidia sp. p57 1500 (478–10 944)

B. triatomae 614 (390–1011)

Vickermania ingenoplastis CP21 4078 (815–33 440)

Herpetomonas muscarum MMO-01 1282 (388–4675)

H. samuelpessoai 1989 (862–32 804)

Lafontella sp. GMO-01 1169 (708–3080)

Phytomonas sp. EM1 2554 (1507–4906)

Jaenimonas sp. Finn-01.02 2112 (879–5679)

Walacemonas collosoma
ATCC30261

1290 (466–7332)

W. rigidus PL11 1253 (408–9550)

Angomonas deanei CT-IOC 044 1245 (466–3948)

A. desouzai CT-IOC 109 588 (294–1334)

Strigomonas oncopelti TCC290E 420 (282–600)

Kentomonas sorsogonicus MF-08.02 1017 (384–6178)

Blechomonas ayalai B08-376 1693 (1097–3152)

Ble. pulexsimulantis ATCC50186 1972 (687–8889)

Trypanosoma brucei brucei Lister
427 (BF)

3422 (474–24 711)

T. b. brucei Lister 427 29-13 (PF) 3108 (470–24 281)

T. mega CP029 414 (252–715)
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900–1200 bp; hereafter only rounded weighted median data are
compared in the text, see Table 3 for minimum and maximum
values), while telomeres in analysed Crithidia spp. ranged from
400 bp in C. fasciculata Cf-C1 to 4300 bp in C. expoeki. These
numbers correlate well with previous reports on telomere length
in the selected representatives of the genera Crithidia,
Leishmania and Trypanosoma (Genest et al., 2007). Of note, the
repertoire of genes implicated in telomere maintenance is identi-
cal in these flagellates (Table 2), so these differences can be
explained by either the presence of other proteins involved in
this process, or (more likely) differences in gene expression.
Telomeres of Blechomonas, Herpetomonas, Jaenimonas and
Wallacemonas spp. are 1300–2100 bp long. The endosymbiont-
containing Strigomonadinae [Angomonas, Kentomonas and
Strigomonas spp. (Votýpka et al., 2014)] differ in telomere length,

with S. oncopelti bearing the shortest chromosome ends of
∼400 bp.

Representatives of three genera (Blastocrithidia, Leishmania
and Trypanosoma) deserved special attention. Uniquely among
trypanosomatids, Blastocrithidia spp. lack Ku proteins
(Nenarokova et al., 2019), yet their telomeres are of similar length
to telomeres of other trypanosomatids (600 and 1500 bp in B.
triatomae and Blastocrithidia sp., respectively), arguing that either
Ku proteins are dispensable for the telomere length maintenance
in these species, or their loss can be compensated by other factors.
Telomere sizes vary in different Trypanosoma spp. represented by
short telomeres in T. mega (400 bp) and substantially longer tel-
omeres in T. brucei Lister 427 (3100–3400 bp). In contrast to
the previous report (Dreesen and Cross, 2008), we did not docu-
ment differences in telomeres’ length between the procyclic and

Fig. 3. Transcript levels of telomere-associated proteins and telomere lengths in the species of L. mexicana complex. (A) Quantitative RT-PCR analysis of the core
set of proteins implicated in telomere maintenance. Gene expression is presented as normalized means and standard deviations of three replicates. Data are pre-
sented in two graphs to account for differences in expression values. (B, C) Southern blotting analysis of telomere repeats (B) and telomerase-encoding gene (C,
used as an additional DNA integrity control) in L. amazonensis LV78, LV79, PH8, Josefa and L. mexicana M379. Marker sizes are indicated on the left. DNA integrity
controls are presented in Supplementary Fig. 1 (right panel).
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bloodstream stages of T. brucei. However, both strains in our ana-
lysis have the same origin (Lister 427), while the abovementioned
study compared Lister 427 and TREU927 strains. Similar to the
cases discussed above, despite possessing the same repertoire of
telomere-bound proteins, the distribution of telomere sizes in
the Leishmania–Porcisia–Endotrypanum clade (Espinosa et al.,
2018) is wide, exemplified by two extreme cases of P. hertigi
(5000 bp) and L. mexicana (400 bp, Fig. 2). Variable telomere
length in Leishmania spp. (and possibly other Leishmaniinae)
may be explained by the presence of a stress-sensitive telomere-
proximal replication activity outside S phase of the cell cycle in
these species (Damasceno et al., 2020, 2021).

RNA level of telomerase and several telomere-associated
proteins correlates with telomere length in the species of L.
mexicana complex

We analysed telomere length and expression of the core set of
proteins putatively involved in telomere maintenance in closely
related species forming the L. mexicana complex (Eresh et al.,
1994). Similar to the cases discussed above, telomeres in L. mex-
icana and four isolates of L. amazonensis greatly differed in length
from ∼400 bp in L. mexicana M379 to ∼3400 bp in L. amazonen-
sis LV79 (Fig. 3, Table 3, Supplementary Fig. 1). Such a wide
range of telomere lengths correlated well with the expression of
the Leishmania spp. telomerase (orthologue of Tb927.11.10190)
and a telomere-associated hypothetical protein (orthologue of
Tb927.6.4330). The higher expression of these proteins correlated
with longer telomeres. The specific roles of these and other pro-
teins remain to be further elucidated by functional studies.

Conclusions

The genome analysis has allowed us to identify a core set of 20
conserved proteins predicted to be responsible for telomere main-
tenance in trypanosomatids. Several proteins, previously identi-
fied in T. brucei pull-downs, are trypanosome-specific. Out of
20 proteins conserved in Trypanosomatidae, two (Ku70 and
Ku80) are conspicuously missing in Blastocrithidia spp., yet telo-
meres in these species do not appear to be affected by their loss.
We documented that telomeres of trypanosomatids are diverse in
length, even within groups of closely related species. One such
group is a complex of species, related to L. mexicana. Our analysis
demonstrated that the expression of several telomere-associated
proteins correlates with the documented differences in telomere
length within species of the L. mexicana complex, which is indi-
cative of a potential role these proteins may play in the telomere
length maintenance.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182021000378.
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